

1 **Effects of golf course management on subsurface soil properties in Iowa**

2 Matthew T. Streeter* and Keith E. Schilling

3 Iowa Geological Survey, 300 Trowbridge Hall, University of Iowa, Iowa City, IA 52242

4 *corresponding author: matthew-streeter@uiowa.edu; (319) 335-1593

5 **Abstract**

6 Currently, in the USA and especially in the Midwest region, urban expansion is developing
7 turfgrass landscapes surrounding commercial sites, homes, and recreational areas on soils that
8 have been agriculturally managed for decades. Often, golf courses are at the forefront of
9 conversations concerning anthropogenic environmental impacts since they account for some of
10 the most intensively managed soils in the world. Iowa golf courses provide an ideal location to
11 evaluate whether golf course management is affecting the quality of soils at depth. Our study
12 evaluated how soil properties relating to soil health and resiliency varied with depth at golf
13 courses across Iowa and interpreted relationships of these properties to current golf course
14 management, previous landuse, and inherent soil properties. Systematic variation in soil
15 properties including sand content, NO_3 , and SOM were observed with depth at six Iowa golf
16 courses among three landform regions. Variability in sand content was identified between the
17 20 and 50 cm depth classes at all courses, where sand content decreased by as much as 37%.
18 Highest concentrations of SOM and NO_3 were found in the shallowest soils, whereas total C and
19 P variability was not related to golf course management. Sand content and NO_3 were found to
20 be directly related to golf course management, particularly at shallow depths. The effects of
21 golf course management dissipated with depth and deeper soil variations were primarily due to
22 natural geologic conditions.

24 **1. Introduction**

25 Critical evaluation of resilience and health of soil resources has been fueled by a recent
26 urgency to understand anthropogenic impacts on environmental resources relating to local,
27 regional, and international environmental sustainability and quality (Doran and Zeiss,
28 2000; Glanz, 1995). Urban expansion is a primary cause for these recent concerns. Currently, in
29 the USA and especially in the Midwest region, urban expansion is developing turfgrass
30 landscapes surrounding commercial sites, homes, and recreational areas on soils that have
31 been agriculturally managed for decades (Qian and Follett, 2002). Often, golf courses are at the
32 forefront of conversations concerning anthropogenic environmental impacts since they account
33 for some of the most intensively managed soils in the world (Balogh and Walker, 1992).

34 Limited information is available documenting changes in soils due to golf course
35 management, especially at depth, since most studies focus on the rooting depth of turfgrass
36 and near the surface where soils are engineered to ideal texture classes (Bauters et al., 2000).
37 Qian and Follett (2002) conducted a study on the effects of landuse change to turfgrass on soil
38 organic matter (SOM) and found that previous landuse imparted a strong baseline control.

39 However, while this study analyzed data from nearly 700 data sets, the results were limited to
40 the top 15 cm of soil. In contrast, deep soil quality affects via landuse management has been
41 observed in agricultural systems. Tomer and Burkart (2003) observed a significant increase in
42 soil nutrient concentrations at a depth of 17 m below ground surface that was associated with
43 historical fertilizer applications that occurred 20 years prior. Furthermore, they estimated NO_3^-
44 N percolation rates in loess soils to be approximately 0.67 m/yr. With the apparent decades-
45 long translocation of soil nutrients after agricultural soil management, it is of interest to

46 determine whether golf course management is similarly affecting the resiliency and long-term
47 sustainability of soil resources.

48 There are over 400 golf courses in Iowa and many of these have been in operation for
49 decades. With some of the most productive agricultural soils in the world, Iowa golf courses
50 provide an ideal location to evaluate whether golf course management is affecting the quality
51 of soils at depth. Specifically, our study objectives were to: 1) evaluate how soil physical and
52 chemical properties relating to soil health and resiliency varied with depth at golf courses
53 across Iowa; and 2) interpret relationships of these properties to current golf course
54 management, previous landuse, and inherent soil properties.

55 **2. Materials and methods**

56 Our study sites consisted of 6 golf courses across Iowa, which were selected from
57 approximately 421 golf courses in the state. A stratified random design was used to select
58 courses by alphabetically grouping courses based on their location in eastern, central, and
59 western Iowa and separating them into 18-hole and 9-hole classes. Courses were then selected
60 using a random number generator. If permission for sampling was not obtained from the
61 course, the next randomly selected course was selected. Ultimately, three 18-hole and three 9-
62 hole courses were selected (Figure 1). Iowa is comprised of several landform regions that are
63 associated with different glacial advances and post-glacial erosion (Prior, 1991), and courses
64 were selected in a variety of landform regions. One course was located on the Iowan Surface
65 landform region in Eastern Iowa which consists of a significantly dissected glacial landscape and
66 loamy pediment. Two courses were located on the Southern Iowa Drift Plain, which is a
67 highly weathered pre-Illinoian glacial landscape capped in loess. Finally, three courses were

68 located on the Des Moines Lobe which consists of recent Wisconsinan age glacial deposits and
69 hummocky topography (Table 1).

70 Three of the courses (Central 9, West 9, and West 18) were combined public and private
71 use in towns of less than 5,000 people. The other three courses (East 9, East 18, and Central 18)
72 were privately managed country clubs positioned in communities of 10-60,000 people. The
73 smaller 9-hole courses ranged from 20 to 33 ha in size compared to the larger 18-hole courses
74 which ranged from 37 to 68 ha. Tee boxes, greens, and fairways at the courses consisted of
75 bentgrass except at the West 9 and Central 9 courses where fairways consisted of a variety of
76 bentgrass, bluegrass, and rye. Grass varieties in roughs varied widely but consisted mainly of
77 bentgrass, bluegrass, fescue, rye, and annual bluegrass in varying proportions. For each course,
78 superintendents recorded and made available annual fertilizer application rates (typically four
79 applications per year) for tee boxes, fairways, and roughs (Table 2). Generally, the roughs
80 received the least fertilizer while the tee boxes received the most. Four out of six roughs
81 received no fertilizer. Only one course (West 9) applied P fertilizer, whereas all courses applied
82 N and K fertilizer. Prior land use at the courses was identified from historical air photography
83 which was available starting in the 1930s (Iowa Department of Natural Resources, 2017). Golf
84 course opening dates were verified with the superintendents (Table 1).

85 At each course, soil samples were collected in conjunction with shallow monitoring well
86 installations being performed for a water quality study (Figure 2; Schilling and Streeter (2017)).
87 Based on conversation with course superintendents, sampling locations were selected that
88 could be easily accessed multiple times with minimal course disruption. Soil samples were
89 collected according to the stratigraphy encountered at each site. Sampling depths were

90 consistent within each course, but varied among courses based on the depth required to
91 breach the water table for the water quality assessment (Table 1).

92 Continuous core was collected from each borehole by which the soil was described
93 according to Schoeneberger (2012). Soil samples were collected, air dried and ground to pass a
94 2 mm sieve and lab analyzed according to Brown (1998) for P by strong Bray extraction.
95 Furthermore, total soil carbon (TC) and total soil nitrogen (TN) were determined by elemental
96 analysis via dry combustion and chromatography (Costech Analytical Technologies, 2015). Soil
97 organic Matter (SOM) was determined by weight loss on ignition (Walkley and Black, 1934) as
98 described by Schulte (1995). Nitrate nitrogen (NO₃) was measured by segmental flow analysis.
99 Particle size distribution was determined by x-ray absorption (Micromeritics Instrument
100 Corporation, 2015). A total of 127 soil samples were collected and analyzed (Table 1).

101 **3. Results**

102 Site stratigraphy was expectedly variable across the range of courses. The courses were
103 located on varying landscape positions and soils formed in a variety of different parent
104 materials including alluvium, glacial till, and loess. Depth of soil development ranged from 26
105 cm in glacial till at the central 18 course to 172 cm in loess at the west 18 course. Soils were less
106 variable within courses, but variations were observed due to golf course management,
107 primarily in terms of soil texture. In many locations, natural sand layers were identified at
108 varying depths as well as evidence of human alteration to soil texture near the soil surface. On
109 average, sand content was 25% higher in the upper 20 cm compared to the next lower depth
110 class (50 cm depth) for all courses (Table 3 and Figure 3). Decreasing sand content with depth
111 was most noticeable in courses on the Southern Iowa Drift Plain where average sand content

112 decreased from 45 to 8%. However, since background sand content in soils from different
113 geologic regions ranged widely among the courses (11-74%), we could not quantify the
114 statistical significance of the sand content differences due to the limited sample size. In
115 essence, testing for changes in sand content in courses could be done within the same landform
116 region because soils have similar background conditions, but in our study we have only 1-3
117 courses per landform region.

118 In contrast to physical properties, varying concentrations of soil chemical properties
119 were identified near the soil surface at multiple courses (Table 3). Course average TC and SOM
120 ranged from 0.45-4.11% and 0.76-1.89%, respectively and ranged from 0.11-4.82% and 0.21-
121 5.50% for individual samples. Likewise, SOM ranged from 2.9 to 5.5% in samples collected at 20
122 cm, and was weakly correlated to TC ($r=0.27$). SOM decreased with depth at all courses ($r=0.47$)
123 regardless of landform region, whereas TC was not correlated to depth. Additional sampling is
124 required to test the statistical significance of changes in soil chemical properties with depth.
125 NO_3 and TN concentrations also decreased with increasing depth ($r=0.41$ and $r=0.40$,
126 respectively). NO_3 concentrations were observed to decrease at the greatest rates between the
127 first two depth classes (20 to 50 cm), whereas TN decreased more gradually. NO_3
128 concentrations decreased substantially from 15 to 2 mg/kg between 20 and 50 cm at East 18
129 located on the Iowan surface while concentrations dropped by more than 50% at all other
130 locations by 100 cm. C/N ratio ranged from 13 at the East 9 course (floodplain) to 57 at the
131 Central 18 course (glacial upland). C/N ratios of more than 20 generally occurred at depths
132 greater than 20 cm. However, C/N ratios were not significantly correlated with depth. Mean P

133 concentrations ranged from 18-67 mg/kg and were not correlated with any other soil property
134 measured.

135 **4. Discussion**

136 **4.1. Soil Physical Properties**

137 In this study, we evaluated soil conditions at six randomly selected Iowa golf courses
138 located in three different landform regions of the state. Despite inherent variation associated
139 with parent materials, study results indicated systematic variation in several soil properties with
140 depth at the Iowa golf course sites. These systematic variations by depth are intriguing, but
141 require further study to expand sample sizes in order to test statistical significance. Even so,
142 preliminary conclusions may be drawn regarding the significance of landuse on soil properties.

143 At a gross scale, soil particle size distributions were mainly associated with the parent
144 material of the region. Typical sand contents of loess in western Iowa consist of less than 10%
145 sand, whereas soils formed in glacial till in central Iowa often exceed 50% sand and may be
146 highly variable (Soil Survey Staff, 2016). Our study found less than 10% sand in the unaltered
147 soil formed in loess from 20-100 cm at the West 18 course. However, the surface soil horizon
148 was much higher (45%) at this course. Unlike the deeper depth classes, the elevated sand
149 content near the soil surface was not likely an inherent soil property due to the nature of the
150 loess parent material, but rather caused by golf course landuse. Our study found sand content
151 was much higher at the four courses located on glacial till derived soils (West 9, Central 9 and
152 18, and East 18) compared to the courses located on loess (West 18) or alluvium (East 9) (Table
153 4). With the exception of the Central 9 course, the glacial derived soils exhibited a sharp
154 decrease in sand content between the 20 and 50 cm depths (as much as 37%) that may not be

155 explained primarily by inherent soil properties. Although natural variability in sand content
156 varied widely between landform regions, average sand content for all courses was 25% higher
157 in the 0-20 cm interval compared to the 20 to 50 cm depth.

158 Golf course soils are regularly aerated and top-dressed by adding new sand to the
159 surface of the established soil profile (Bandaranayake et al., 2003; Bauters et al., 2000). Golf
160 course superintendents at our study sites confirmed that topdressing was performed on an
161 annual basis at all but the Central 9 course. This topdressing management approach explains
162 the elevated sand content near the surface at our study sites. Increased sand content of the
163 surface soil horizons due to topdressing may have several implications for soil health and
164 development. Altering the particle size distribution of the soil may in-turn alter several soil
165 properties including bulk density and porosity (Arya and Paris, 1981; Gupta and Larson, 1979),
166 soil compaction (Bodman and Constantin, 1965), hydraulic conductivity and water holding
167 capacity (Campbell and Shiozawa, 1992; Jabro, 1992), as well as SOM content and distribution
168 (Anderson et al., 1981; Puget et al., 2000; Tiessen and Stewart, 1983), and NO_3 concentrations
169 via CEC (Anderson et al., 1981; Arya and Paris, 1981; Ersahin et al., 2006). Bandaranayake et al.
170 (2003) explained that topdressing soil with sand prolongs the time required for SOM content to
171 reach equilibrium in the soil profile. Since SOM affects several other soil properties, it is likely
172 that the soil conditions at our study sites are much less stable than those at surrounding non-
173 golf course sites.

174 **4.2. Soil chemical properties**

175 Similar to the inherent nature of soil texture, TC content may also be primarily
176 dependent on the soil parent material and may be highly spatially variable (Huang et al., 2007).

177 Courses on unaltered glacial deposits (West 9, Central 9 and 18) exceeded 4% TC due to high
178 inorganic carbon concentrations, whereas courses on reworked Iowan Surface glacial sediments
179 (East 18) as well as weathered Southern Iowa Drift Plain deposits had TC concentrations less
180 than 2%. These reworked and weathered soils have likely experienced inorganic carbon
181 leaching which has left the soils void of almost all inorganic carbon. This was quite noticeable
182 when comparing TC between landform regions at all depths and it also explains the variability
183 in C/N ratio at depths greater than 100 cm in our study where C/N ratio is 4 to 10 times greater
184 in Des Moines Lobe soils. The variability in TC (and C/N ratio below 100 cm) that we have
185 identified through this study may be entirely affected by parent material and natural
186 weathering patterns.

187 Soil chemical properties including SOM at the Iowa golf course were altered from their
188 long-term equilibrium conditions established under native perennial vegetation in response to
189 modern agricultural management and urban landuse. For example, agricultural drainage in
190 conjunction with row crop agriculture can decrease SOM between 24 and 89% compared to
191 that of perennially managed soils (Knops and Tilman, 2000; Kucharik et al., 2001; VandenBygaart
192 et al., 2003). In urban areas, Qian and Follett (2002) conducted a study on the effects of landuse
193 change to turfgrass and found that previous landuse imparted a strong baseline control on SOM
194 concentrations. Bandaranayake et al. (2003) estimated that turfgrass systems (e.g. golf courses)
195 could sequester up to 32 Mg/ha of soil organic carbon (approximately 64Mg/ha of SOM) in the
196 top 20 cm of soil within 30 years of establishment. At the Iowa golf courses, we observed
197 substantially lower SOM contents in the upper 20 cm (2.9 to 5.5%) in samples collected at 20
198 cm but concentrations were highest in the uppermost layer and decreased with depth at all

199 courses. Although accumulation of SOM in the upper 20 cm is consistent with Bandaranayake
200 et al. (2003), attributing specific SOM changes to golf course management is not possible with
201 our study. The SOM profiles could define native perennial, agricultural, or urban turfgrass
202 landuse.

203 In agricultural systems, application of N fertilizer has been found to migrate through the
204 soil profile (De Haan et al., 2017; Tomer and Burkart, 2003). In deep loess soils of western Iowa,
205 Tomer and Burkart (2003) documented a zone of high soil NO_3 located 17 m below land surface
206 due to over-application of commercial fertilizer 20 years earlier. De Haan et al. (2017) observed
207 that cropping systems has a large impact on residual soil NO_3 in the upper 1.8 m of the soil
208 profile. Residual soil NO_3 in the soil profile under continuous corn with a rye cover crop was
209 more than seven times higher than a perennial grass system. Others have similarly observed
210 residual NO_3 concentrations under agricultural land use in Iowa as high as 60 mg/kg (Blackmer
211 et al., 1989). However, the golf courses in our study applied varying rates of slow release N
212 fertilizer to Tee boxes and fairways, and only two courses (East 9 and 18) applied N fertilizer to
213 the roughs (Table 2). We estimated (based on typical bulk density values for surface soils in
214 Iowa) that soil NO_3 concentrations ranged from 15-35 kg/ha for our study sites. Our study
215 shows evidence of higher NO_3 levels in golf course soils than that of typical perennially
216 managed soils (less than 10 kg/ha), but not necessarily as high as typical agricultural
217 management (40-70 kg/ha) (De Haan et al., 2017). Recent studies provide evidence that once
218 application of N fertilizer ceases, the top 1 m of the soil may return to native concentrations of
219 NO_3 within 10 years (Streeter and Schilling, 2017). Since the courses for our study have been

220 established for over 50 years, it is likely that the current NO_3 concentrations near the soil
221 surface reflects golf course management rather than historical agricultural practices.
222 P concentrations at the courses were not correlated with any other soil property
223 measured during our study. Furthermore, P fertilizer was only applied at 1 course (West 9) on
224 the rough. Typically, background P concentrations in Iowa soils vary from 0-100 mg/kg
225 depending on the mineralogy of the soil parent material (Fenton, 1999). Loess derived soils
226 generally have the highest P, while glacial till derived soils will have some of the lowest P
227 concentrations (Fenton, 1999). Similarly, our study identified the highest P concentrations at
228 the West 18 course (loess derived soil) and the lowest P concentrations at the Central 18 course
229 (glacial till derived soil). Our study results suggest no significant alterations to background soil P
230 concentrations by golf course management.

231 **5. Conclusions**

232 In this study, systematic variation in soil properties including sand content, NO_3 , and
233 SOM were observed with depth at six Iowa golf courses among three landform regions.
234 Variability in sand content was identified between the 20 and 50 cm depth classes at all
235 courses, where sand content decreased by as much as 37%. Highest concentrations of SOM and
236 NO_3 were found in the shallowest soils, whereas TC and P variability was not related to golf
237 course management and did not correlate with depth. Although many of the soil properties
238 measured for this study may be influenced by parent material and native vegetation, sand
239 content and NO_3 were found to be directly related to golf course management, particularly at
240 shallow depths. The effects of golf course management dissipated with depth and deeper soil
241 variations were primarily due to natural geologic conditions. Further work is recommended to

242 increase sample size of course sites within different landform regions to better quantify the
243 variability of soil properties with depth. Likewise, additional investigation of spatial patterns
244 within individual courses would improve characterization of soil quality patterns among
245 managed and unmanaged areas. Despite limitations, our study indicates that golf course
246 management is affecting the surface and subsurface quality of soils.

247 **References**

248 Anderson, D., Saggar, S., Bettany, J., and Stewart, J.: Particle size fractions and their use in studies of soil
249 organic matter: I. The nature and distribution of forms of carbon, nitrogen, and sulfur, *Soil Science
250 Society of America Journal*, 45, 767-772, 1981.

251 Arya, L. M., and Paris, J. F.: A physicoempirical model to predict the soil moisture characteristic from
252 particle-size distribution and bulk density data, *Soil Science Society of America Journal*, 45, 1023-1030,
253 1981.

254 Balogh, J. C., and Walker, W. J.: *Golf course management & construction: Environmental issues*, CRC
255 Press, 1992.

256 Bandaranayake, W., Qian, Y., Parton, W., Ojima, D., and Follett, R.: Estimation of soil organic carbon
257 changes in turfgrass systems using the CENTURY model, *Agronomy Journal*, 95, 558-563, 2003.

258 Bauters, T., Steenhuis, T., DiCarlo, D., Nieber, J., Dekker, L., Ritsema, C., Parlange, J.-Y., and Haverkamp,
259 R.: Physics of water repellent soils, *Journal of Hydrology*, 231, 233-243, 2000.

260 Blackmer, A., Pottker, D., Cerrato, M., and Webb, J.: Correlations between soil nitrate concentrations in
261 late spring and corn yields in Iowa, *Journal of Production Agriculture*, 2, 103-109, 1989.

262 Bodman, G., and Constantin, G.: Influence of particle size distribution in soil compaction, *California
263 Agriculture*, 36, 567-591, 1965.

264 Brown, J. R.: *Recommended chemical soil test procedures for the North Central Region*, Missouri
265 Agricultural Experiment Station, University of Missouri--Columbia, 1998.

266 Campbell, G., and Shiozawa, S.: *Prediction of hydraulic properties of soils using particle-size distribution
267 and bulk density data, Indirect methods for estimating the hydraulic properties of unsaturated soils*.
268 University of California, Riverside, 317-328, 1992.

269 De Haan, R. L., Schuiteman, M. A., and Vos, R. J.: Residual soil nitrate content and profitability of five
270 cropping systems in northwest Iowa, *PLoS one*, 12, e0171994, 2017.

271 Doran, J. W., and Zeiss, M. R.: Soil health and sustainability: managing the biotic component of soil
272 quality, *Applied soil ecology*, 15, 3-11, 2000.

273 Ersahin, S., Gunal, H., Kutlu, T., Yetgin, B., and Coban, S.: Estimating specific surface area and cation
274 exchange capacity in soils using fractal dimension of particle-size distribution, *Geoderma*, 136, 588-597,
275 2006.

276 Fenton, T.: *Phosphorus in Iowa soils*, Agronomy Department, Iowa State University, 1999.

277 Glanz, J.: *Saving our soil: solutions for sustaining earth's vital resource*, Johnson Books, 1995.

278 Gupta, S., and Larson, W.: Estimating soil water retention characteristics from particle size distribution,
279 organic matter percent, and bulk density, *Water resources research*, 15, 1633-1635, 1979.

280 Huang, X., Senthilkumar, S., Kravchenko, A., Thelen, K., and Qi, J.: Total carbon mapping in glacial till soils
281 using near-infrared spectroscopy, *Landsat imagery and topographical information*, *Geoderma*, 141, 34-
282 42, 2007.

283 Natural Resources Geographic Information Systems Library: <https://programs.iowadnr.gov/nrgislibx/>,
284 access: April, 2017.

285 Jabro, J.: Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk
286 density data, *Transactions of the ASAE*, 35, 557-560, 1992.

287 Knops, J. M., and Tilman, D.: Dynamics of soil nitrogen and carbon accumulation for 61 years after
288 agricultural abandonment, *Ecology*, 81, 88-98, 2000.

289 Kucharik, C. J., Brye, K. R., Norman, J. M., Foley, J. A., Gower, S. T., and Bundy, L. G.: Measurements and
290 modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: potential for SOC
291 sequestration during the next 50 years, *Ecosystems*, 4, 237-258, 2001.

292 Prior, J. C.: *Landforms of Iowa*, University of Iowa Press, 1991.

293 Puget, P., Chenu, C., and Balesdent, J.: Dynamics of soil organic matter associated with particle-size
294 fractions of water-stable aggregates, *European Journal of Soil Science*, 51, 595-605, 2000.

295 Qian, Y., and Follett, R. F.: Assessing soil carbon sequestration in turfgrass systems using long-term soil
296 testing data, *Agronomy Journal*, 94, 930-935, 2002.

297 Schilling, K. E., and Streeter, M. T.: Groundwater Nutrient Concentrations and Mass Loading Rates at
298 Iowa Golf Courses, *JAWRA Journal of the American Water Resources Association*, 2017.

299 Schoeneberger, P. J., Wysocki, D.A., Benham, E.C., Soil Survey Staff.: *Field Book for Describing and
300 Sampling Soils*, Version 3. 0, Government Printing Office, 2012.

301 Schulte, E.: Recommended soil organic matter tests, *Recommended Soil Testing Procedures for the
302 North Eastern USA*. Northeastern Regional Publication, 52-60, 1995.

303 Web Soil Survey: <http://websoilsurvey.nrcs.usda.gov>, access: December, 2016.

304 Streeter, M. T., and Schilling, K. E.: Soil Properties in Native, Reconstructed, and Farmed Prairie Potholes:
305 A Chronosequence Study of Restoration Timeframes, *Ecological Restoration*, 35, 6-12, 2017.

306 Tiessen, H., and Stewart, J.: Particle-size fractions and their use in studies of soil organic matter: II.
307 Cultivation effects on organic matter composition in size fractions, *Soil Science Society of America
308 Journal*, 47, 509-514, 1983.

309 Tomer, M., and Burkart, M.: Long-term effects of nitrogen fertilizer use on ground water nitrate in two
310 small watersheds, *Journal of Environmental Quality*, 32, 2158-2171, 2003.

311 VandenBygaart, A., Gregorich, E., and Angers, D.: Influence of agricultural management on soil organic
312 carbon: A compendium and assessment of Canadian studies, *Canadian Journal of Soil Science*, 83, 363-
313 380, 2003.

314 Walkley, A., and Black, I. A.: An examination of the Degtjareff method for determining soil organic
315 matter, and a proposed modification of the chromic acid titration method, *Soil science*, 37, 29-38, 1934.

316

317 **Figure Captions:**

318 Figure 1. Location map showing the six golf courses chosen for this study.
319 Figure 2. Soil sampling and monitoring well installation at East 18 course.
320 Figure 3. Profile of selected soil constituents with depth at the six Iowa golf courses.

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336 Table 1. Golf course site information.

Course	Year Opened	Previous Landuse	Landform	Parent Material	Max. Depth (cm)	Number of Samples
West 18	1963	row crop	Southern Iowa Drift Plain	loess	767	19
West 9	1938	row crop	Des Moines Lobe	glacial till	380	20
Central 9	1965	row crop	Des Moines Lobe	glacial till	457	18
Central 18	1915	no prior history	Des Moines Lobe	glacial till	506	26
East 18	1965	row crop	Iowan Surface	glacial sediments	546	22
East 9	1920	no prior history	Southern Iowa Drift Plain	alluvium	405	22

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351 Table 2. Summary of annual fertilizer rates at selected Iowa golf courses.

Course	Position	N kg/ha	Weighted Course Average N		K kg/ha
			kg/ha	P kg/ha	
West 18	Tee	90		0	44
West 18	Rough	0		0	0
West 18	Fairway	77	28.5	0	11
West 9	Tee	73		5.4	22
West 9	Rough	0		0	0
West 9	Fairway	37	15.4	0	6
Central 18	Tee	146		0	26
Central 18	Rough	0		0	0
Central 18	Fairway	110	41.7	0	0
Central 9	Tee	51		0	17
Central 9	Rough	0		0	0
Central 9	Fairway	51	18.5	0	17
East 18	Tee	87		0	132
East 18	Rough	112		0	17
East 18	Fairway	63	95.8	0	107
East 9	Tee	169		0	20
East 9	Rough	22		0	7
East 9	Fairway	115	59.2	0	19

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367 Table 3. Soil conditions by depth at Iowa golf courses.

Course	n	Depth Class	Sand %	P mg/kg	SOM %	NO3 mg/kg	TC %	TN %	C/N
Central 18	2	20	53 +/-42	18 +/-2	5.50 +/-4.24	5.00 +/-2.82	4.63 +/-0.17	0.33 +/-0.28	22 +/-19
Central 18	5	50	40 +/-23	18 +/-9	4.46 +/-3.69	8.20 +/-6.22	4.82 +/-2.35	0.29 +/-0.21	47 +/-75
Central 18	6	100	40 +/-21	03 +/-3	1.65 +/-1.83	3.83 +/-2.31	3.08 +/-2.18	0.10 +/-0.08	30 +/-33
Central 18	12	500	26 +/-25	02 +/-2	0.48 +/-0.27	1.25 +/-0.45	4.21 +/-2.14	0.05 +/-0.05	84 +/-37
Central 18	1	1000	05 +/-	02 +/-	0.30 +/-	1.00 +/-	4.69 +/-	0.07 +/-	67 +/-
Central 9	2	20	35 +/-2	14 +/-1	5.50 +/-0.14	15.50 +/-	2.58 +/-0.48	0.18 +/-0.07	14 +/-4
Central 9	2	50	50 +/-1	10 +/-0	2.35 +/-1.76	4.00 +/-4.24	1.81 +/-0.43	0.08 +/-0.01	22 +/-12
Central 9	5	100	46 +/-10	04 +/-9	1.52 +/-1.13	1.60 +/-0.89	1.15 +/-0.84	0.06 +/-0.05	19 +/-1
Central 9	9	500	61 +/-10	04 +/-3	0.48 +/-0.30	1.11 +/-0.33	1.51 +/-1.25	0.01 +/-0.02	15 +/-5
East 18	1	20	81 +/-	31 +/-	2.60 +/-	15.00 +/-	1.54 +/-	0.11 +/-	14 +/-
East 18	6	50	74 +/-9	27 +/-1	1.53 +/-0.95	2.83 +/-2.31	0.77 +/-0.54	0.04 +/-0.03	19 +/-6
East 18	4	100	78 +/-8	17 +/-1	0.40 +/-0.21	1.25 +/-0.50	0.18 +/-0.12	0.01 +/-0.00	18 +/-9
East 18	9	500	79 +/-25	15 +/-3	0.21 +/-0.16	1.11 +/-0.33	0.11 +/-0.08		
East 18	2	1000	42 +/-0	02 +/-2	0.80 +/-0	1.00 +/-0	1.04 +/-0.10		
East 9	4	20	11 +/-5	16 +/-1	3.15 +/-1.96	4.50 +/-3.31	1.74 +/-1.77	0.10 +/-1.12	17 +/-22
East 9	6	50	07 +/-2	23 +/-5	1.48 +/-0.42	1.00 +/-0	0.94 +/-0.36	0.09 +/-0.02	10 +/-2
East 9	12	500	28 +/-33	27 +/-2	0.57 +/-0.26	1.00 +/-0	0.22 +/-0.08	0.02 +/-0.02	11 +/-1
West 18	1	20	45 +/-	97 +/-	2.90 +/-	9.00 +/-	1.72 +/-	0.14 +/-	12 +/-
West 18	6	50	06 +/-11	28 +/-4	2.92 +/-0.95	5.83 +/-3.43	0.90 +/-0.75	0.04 +/-0.05	22 +/-22
West 18	3	100	01 +/-0	46 +/-2	2.20 +/-0.85	3.67 +/-2.08	1.07 +/-0.58	0.08 +/-0.01	13 +/-5
West 18	6	500	16 +/-36	98 +/-3	0.63 +/-0.35	1.17 +/-0.40	0.24 +/-0.12	0.01 +/-0.01	31 +/-36
West 18	3	1000	10 +/-6	48 +/-3	0.67 +/-0.11	1.00 +/-0	0.20 +/-0.05	0.01 +/-0.01	20 +/-
West 9	1	20	26 +/-	19 +/-	2.90 +/-	3.00 +/-	3.12 +/-	0.12 +/-	26 +/-
West 9	3	50	17 +/-4	28 +/-9	4.97 +/-1.54	5.33 +/-2.08	3.04 +/-0.84	0.2 +/-0.07	15 +/-4
West 9	5	100	33 +/-15	21 +/-2	1.56 +/-0.92	3.60 +/-2.61	2.27 +/-0.84	3.6 +/-0.05	23 +/-9
West 9	11	500	33 +/-24	38 +/-4	0.76 +/-0.56	1.27 +/-0.64	1.87 +/-0.86	0.02 +/-0.03	19 +/-16

368

369

370

371

372

373

374

375

376

377

378

379 Table 4. Mean soil conditions at Iowa golf courses.

Course	Sand %	P mg/kg	SOM %	NO3 mg/kg	TC %	TN %	C/N
Central 18	33 +/-25	18 +/-25	1.89 +/-2.65	3.46 +/-3.87	4.11 +/-2.06	0.13 +/-0.15	57 +/-48
Central 9	52 +/-12	50 +/-26	1.53 +/-1.74	3.16 +/-5.54	1.56 +/-1.05	0.04 +/-0.06	18 +/-6
East 18	74 +/-19	37 +/-24	0.76 +/-0.84	2.22 +/-3.17	0.45 +/-0.50	0.01 +/-0.03	22 +/-7
East 9	19 +/-26	57 +/-22	1.29 +/-1.26	1.63 +/-1.86	0.69 +/-0.91	0.05 +/-0.06	13 +/-13
West 18	11 +/-22	67 +/-44	1.72 +/-1.24	3.42 +/-3.18	0.64 +/-0.63	0.03 +/-0.04	23 +/-22
West 9	30 +/-20	31 +/-35	1.7 +/-1.69	2.55 +/-2.13	2.20 +/-0.91	0.06 +/-0.07	20 +/-10

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

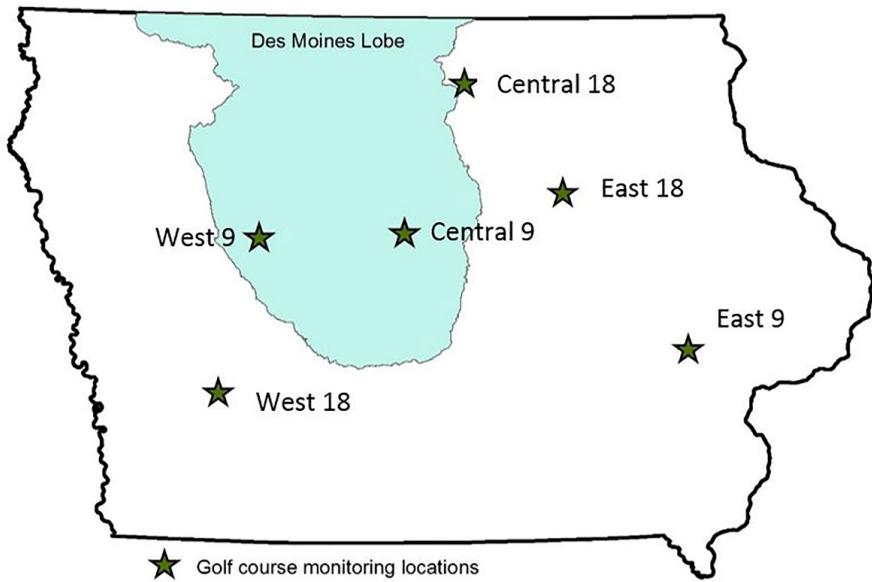
395

396

397

398

399


400

401

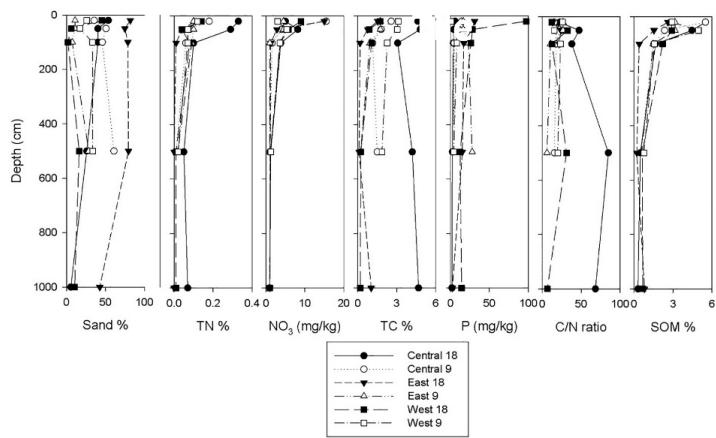
402

403 Figure 1.

404

405

406 Figure 2.



407

408

409 Figure 3.

410

411

412